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Chapter 1

RADIAL PRESHEATH MODEL FOR
FLOWING PLASMAS

1.1 INTRODUCTION

The transverse interaction of a collisionless plasma with two dielectric walls confining it was
treated originally by Tonks and Langmuir[54], who solved the fundamental issues. The zero-
current condition at the walls means that fluxes of ions and electrons to the walls must be
equal, which implies a potential profile decreasing monotonically from around the center of the
channel towards the two walls. Tonks and Langmuir showed that, in the zero Debye-length
limit, the plasma structure consists of two thin non-neutral sheaths tied to the walls and a
quasineutral region (the presheath) occupying the bulk of the channel. Each type of region is
solved separately in their own distinguished scale. The condition for a correct presheath /sheath
transition is unique and consists in the plasma flow being sonic there (the Bohm condition|20]).
Apart from the three basic wall geometries, Tonks and Langmuir (interested in thin cylindrical
probes immersed in cylindrical channels) discussed the case of an annular geometry, pointing
out the lack of symmetry between the profiles of the inner and outer presheaths (these ones
separated by the point of maximum electric potential).

A central contribution of Tonks and Langmuir is the plasma balance equation, which estab-
lishes the plasma production rate required to sustain a steady-state discharge. This production
rate is proportional to the channel width, as it comes out from equating the volumetric produc-
tion of plasma to the losses at the walls. In Tonks-Langmuir model, where plasma production
is dominated by ionization, the plasma balance equation fixes the ionization rate and, as a
consequence, the plasma temperature; indeed, a steady-state discharge is not possible when
the plasma production rate is larger than the maximum ionization rate of the gas. Tonks and
Langmuir considered different radial profiles for the ionization rate, but it was shown later that
the mean value of the plasma production rate is independent of its radial profile [33, 23].

Bissell et al.[16] (reviewing several other papers) and Scheuer and Emmert[50] propose
macroscopic formulations of the Tonks-Langmuir problem (for planar geometry only), with
different closure hypotheses for the ion energy equation. They conclude that macroscopic
models can approximate well the kinetic results, mainly in relation to particle and energy
fluxes towards the walls.

As the Tonks-Langmuir model, these fluid models include ionization as the only source term
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in the plasma equations and, therefore, are restricted to no-flowing plasmas basically. When the
plasma flows along the confining walls, the problem becomes two-dimensional(2D), with mutual
interaction between the longitudinal and transverse (i.e. axial and radial) dynamics. However,
at each axial cross-section (of a long channel) we may consider the one-dimensional(1D) problem
that describes the radial dynamics of the plasma. The requires to take into account the influence
of the axial flow on the radial motion. In the macroscopic formulation this can be modeled
with adequate source terms in the radial equations.

The goal of this paper is to generalize the presheath/sheath model of Tonks-Langmuir
to plasmas flowing axially, with emphasis on the coupled influence of ionization and axial
flow on the radial solution. In a preliminary study (with planar geometry and cold ions) we
showed already that losses to the wall are reduced by an effective radial friction due to axial
variations of the radial conditions|9]. Here we develop the general model for warm ions and
annular geometries. Thus, planar, cylindrical, and annular channels are covered; the differences
between the inner and outer presheaths in the latter case are an extra aspect of interest. No
secondary emission at the walls will be considered here, so that the sheath problem reduces to
a well-known solution and the attention of the paper is focused on the presheath model.

An example of application of the present work is the plasma discharge in an annular Hall
thruster. Since an accurate two-dimensional analysis of this problem is unavailable yet, partial
analyses of the radial and axial problems are of great interest. In particular, the knowledge of the
radial plasma structure would allow one to estimate the losses at the lateral walls at each cross-
section, which could then be included as sink terms in 1D axial models of the discharge|26, 11].
The 2D Hall thruster discharge has been chosen here as the basis to formulate the 1D radial
model for a flowing plasma. However, we believe this formulation to be general enough to apply
to other flowing plasmas interacting with two walls. In order to emphasize this last point and
to free the radial model from the Hall thruster case, the derivation of the 1D radial model from
the 2D axisymmetric model of the discharge has been confined to Appendix A.

In a recent paper on a 2D model of the Hall thruster, Keidar et al.use a presheath/sheath
model for the lateral walls[37|. They claim that for a smooth presheath/sheath solution the
radial ion velocity at the sheath transition must be smaller than the (sonic) Bohm velocity, in
contradiction to the well established sheath theory between a wall and a plasmal|54, 48]. The
main arguments supporting the sonic transition are recalled in Appendix B here. Comments
on other aspects of Keidar’s paper, like their results on the interaction between the axial and
radial responses are out of the scope of this paper.

The rest of the paper is organized as follows. In Sec. II we formulate the radial model, the
boundary and compatibility conditions, and the integration procedure. In Sec. III we discuss
solutions for different cases and geometries. Conclusions are presented in Sec. IV.

1.2 MODEL FORMULATION

1.2.1 The quasineutral presheath

Figure 1.1 sketches the situation on an axial cross-section of an annular chamber. The plasma
is supposed to flow axially between two long dielectric walls placed, in cylindrical coordinates
(x,r,0), at 7 = ry» and 7 = ry = ry + h, with h the channel width. We consider the zero
Debye-length limit, A\y/h — 0, allowing a two-scale, presheath /sheath analysis, where h and A4
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are the distinguished scales of the presheath and sheath, respectively. From Appendix A, the
pertinent 1D fluid equations in the presheath are

10

;—arTni’Um' = VyT, (11)
0 X! 0 0

minivri% = —E(n,T,) - enia—f — UpMyiMiUpi, (1.2)

10,3 Tin; O 1

;5(T§Enivri) + -0 E(rv”-) = Viimin,-vfi + vy 15, (1.3)

ne = const X exp(ep/T,),

Ne = Ny

Here: v;, vy, v,, 14 are frequencies for ionization, ion net production, effective radial friction,
and axial energy contribution, respectively, defined in Eq. (A.7). We assume these frequencies
to be known functions of r in any axial position. Moreover, we restrict the discussion here to
vj(r) = const, (j = ¢, w,r,t), because there are no fundamental novelties when treating more
general profiles (see Ref. [23] and comments in Sec IIT.A).

Operating with the above equations, the radial problem in the presheath reduces to integrate
the two coupled equations

9 Ovr; i
(T, + gTz — mivfi) (;)r = (v, + %)mivfi
5 __ . Upi 5 2 5
—(T.+ =T;)— w1l + =T; —Up — =) 15, 1.6
( +3)T+u( +3 )+(3m 31/) (1.6)
3 8T, 1 2 a?)”' (Y 5
“Upi— = Vi '_Ti( —) wli — —vw)Ti, 1.7
SUrig = VigMity 5 t )tV + (1 21/) (1.7)

plus one differential equation for the electric potential,

0 ed 10

ria \m ) = VYw — T3 7)) 1.
Y ar(Te) g rar(m ) (18)
which corresponds to the so-called plasma equation in kinetic models[54].
Equation (1.6) shows that radial derivatives become singular at
o = () = 1| 5T (1.9
UT'Z - CS v) — mz I .

with ¢; the local sound velocity of the plasma. In particular, the electric field, dé/dr, becomes
infinite there, indicating the failure of the quasineutral approximation and the transition from
the large h-scale to the thin Az-scale of the sheath. Therefore,

UriQ = CsQ,  VriQr = —Csq'; (1.10)

are the Bohm conditions defining the transition points (Q and Q' Fig. 1.1) to the outer and
inner non-neutral sheaths. In Appendix B we show that these transition conditions are the
only valid ones.

11



The electric potential must present a maximum at some intermediate position of the channel
(point M in Fig. 1.1), 0¢/0r|sr = 0. A local expansion of Egs. (1.6)-(1.8) around point M yields

Vi (1) = v (r — rar) + O[(r — rar)?],
(1.11)
Ti(r) = Tiss + O[(r — 710)?;

and the compatibility condition
vy = 5y /2. (1.12)

As Eq. (A.9) in Appendix A confirms, this condition corresponds to the correct balance between
the radial and axial energy fluxes for ions.

Condition (1.12) makes identically zero the last term of each of the equations (1.6) and
(1.7). Then, for the zero-ionization case (v; = 0), Egs. (1.1) and (1.3) yield the isentropic law

1
—5j5 = const, (1.13)
Uy

which substitutes to Eq. (1.7).
Convenient dimensionless variables to integrate Eqs. (1.6)-(1.8) are

o s L e(d—du) Ui T
=—, T,=—, =7 = ——, = L =i,w,r,t), 1.14
with

vy = h™'/T,/m; (1.15)

the characteristic frequency for radial processes. The convenient integration procedure departs
from point M towards points Q and Q’, using the expansions of Eq. (1.11) as initial conditions.
The two independent integrations end where Bohm conditions (1.10) are satisfied, and deter-
mine 7 and 7¢ in terms of five input parameters: TiM, Tm, Vi, Ur, and i, while 7, satisfies
Eq. (1.12).

The sheaths thicknesses are of the order of the Debye length. Thus, in the zero Debye-length
limit, the sheaths are seen as two surface discontinuities in the presheath scale:

Tw X TQ, Twr XTQ. (1.16)
Since the channel width is known, the presheath solution must satisfy the condition
o — o = 1.

This implies an extra relation among the above five input parameters. After exchanging 75, by
the annular ratio

B = TW’/TWa
as known parameter, the extra relation leads to a relationship

i)w = ﬁw(ﬁiaﬁranMaﬁ)' (117)
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This is the generalized form of the Tonks-Langmuir plasma balance equation for lowing plasmas
and annular geometries; the limits § — 1 and § = 0 correspond to the planar and cylindrical
cases, respectively.

The comparison of the present model, Eqgs. (1.1)-(1.5), with those of Refs. [16] and [50], shows
that these ones cover only the cases i) § =1 (i.e., a planar geometry) and ii) v, = v; = v, (i.e.,
a no flowing plasma). Therefore, the four free parameters of Eq. (1.17) are reduced in their
case to just one: Tjy. Also, these no-flowing models use VZ%T,, in Eq. (1.3) instead of 1, T;,
which agrees with Eq. (A.7) for the no-flowing case. This difference in the heating term has
interesting consequences on the balance/compatibility condition for the internal energy. In our
model, the term 1,7; leads to the compatibility condition (1.12), which states that the radial
heating frequency, 14, depends on the radial production/loss frequency, v, whereas the value
of T;pr is free (which agrees with the idea of T;;, depending partially on the axial discharge
conditions). On the contrary, in the no-flowing models of Refs. [16] and [50]|, which do not
include the heating frequency v; (that is, they neglect any axial contribution to ion heating),
the balance/compatibility condition fizes the value of T;5, (as proportional to 7;,). |Differences
in the definitions of the ion temperature in the different models have no relevant consequences
and have then been ignored in the preceding discussion. |

1.2.2 The sheaths

The role of the two radial sheaths, W'Q) and QW in Fig. 1.1, is to provide the potential drop
needed to maintain the zero-current condition at the wall. For the zero Debye-length limit, the
sheaths are collisionless boundary layers perpendicular to the walls. The 2D Poisson equation,
Eq. (A.11), reduces to the 1D radial form, Eq. (B.1), and plasma equations (1.1)-(1.5) become
algebraic, conservation relations for the fluxes of different plasma magnitudes. In particular
and taking the case of the outer sheath, the ion density flux to the outer wall, g.;w = (n;v:)w,
satisfies

Iriw = GriQ = NiQCsQ; (1.18)

with n;g = niyr exp(—edgnr/Te) and dou = ¢p — @ the potential drop at the presheath.
For no secondary emission at the walls and a semi-Maxwellian distribution of the electrons,
the zero current condition follows

EQSW Te
GriQ = MeQ €XP ( - Q),/ Y- (1.19)

with ¢y = ¢ — ¢w the potential drop at the sheath. Solving for ¢y, one has

edwg 1 mi 5Tiq
7 —2[ln p— In (1+ 3Te)}' (1.20)

For all practical values of T;g/T,, the last term on the right can be disregarded, so that the
sheath potential drop is practically independent of the presheath solution.

The above expressions relate the main sheath parameters. The Poisson equation (B.1) needs
to be solved only to determine the spatial structure of the sheath and to find, in a way equivalent
to that used in Appendix B, that the (outer) sheath solution exists only for v, > ¢yq-

13



1.3 PLANAR AND ANNULAR SOLUTIONS

1.3.1 Planar geometry: cold ions

We consider first the simple case
B—1, T=0, —0. (1.21)

The first condition implies that the channel is quasiplanar (satisfying 1/r < 0/0r), so that
the presheath is composed by two symmetric regions, with 7y = (rg + r¢/)/2 the channel
mid-point, and we just need to solve the region M(Q. The second and third conditions yield
T;(r) = const = 0 as the solution of Eq. (1.7).

For the basic 'no-friction’ case, # = 0, the velocity and potential profiles [Eqgs. (1.6) and
(1.8)] satisty

i — U583 = (F — Far)iw, @ = —02%/2. (1.22)
Setting 09 = 1 at 7o = 7ar + 1/2 [Eq. (1.10)] one has
Uy = 4/3, (1.23)

which is the plasma balance condition for this basic case. It states that the total production
frequency is fixed by the channel width and the plasma temperature. Notice that the plasma
balance condition is the consequence of two facts: (a) wall electrical properties imply the
presence of a thin non-neutral sheath; and (b) the transition to this sheath requires the ion
flow to be sonic.

[Were not the frequency profile v, (r) constant, (7—7xs)i, in Eq. (1.22) should be substituted
by f D (7)dF" , and the balance condition would yield ﬂ:}vl Uy (F)dF = 4/3. Since v,; must
be zero at point M and equal to +c¢, at the walls, the shape of 1, (r) modifies only the local
gradients of v,;(r): when v, tends to concentrate around point M, v,; tends to present an
intermediate inflexion point[23]. In any case, since the shape of 1, (r) depends on both the
axial flux and the ionization rate, very steep shapes are unlike.|

For the positive ’friction’ case 7, > 0, Egs. (1.6) and (1.8) yield

ao:’” arctan (G, /ay) — Gyi = Qb (F — Far), (1.24)
~ 1+«

=— “In(1 + o, 9%), 1.25

6= —LE% (1 + i) (1.25)

with o, = v, /1, a convenient parameter|9]. Setting 9,,0 = 1 at 7 = 73 + 1/2, one obtains the
plasma balance condition relating now i, to 7. Figures 1.2(a)-1.2(c) (case Tj3; = 0 and % = 0)
show the evolution, with the friction frequency, of the production frequency, the potential drop
at the presheath, and the plasma current to the wall. For &, — 0, one recovers 7, = 4/3 and
¢Q am = 1/2; for o, > 1, one has 1, ~ 72/, and ¢QM ~ In 7,. These results indicate that larger
ion frictions (i) mean larger potential and density drops across the channel in order to bring
the ion flow to the sonic condition, 0., = 1, at the sheath tied to the wall, and (ii) yield lower
production frequencies. Therefore, the axial motion turns out to be an efficient mechanism to
inhibit the plasma losses to the wall.

14



However, the ion axial motion can lead to negative values of 7, too, which increase the
plasma current to the wall. For o, < 0, 9,;(7, ) and 7, (7,.) satisfy

T+a, | 1—wvlat?
n
2|04r‘1/2 1+Uri|ar‘1/2

Ups + = \ar\ﬁw(F - fM), (126)

and Eq. (1.10). These relations show that dv,,/0(—v,) > 0, but solutions with negative friction
exist only up to 7, = —2 (yielding 7, = 2). Were —7, > 2, the plasma velocity would not reach
the Bohm velocity, Eq. (1.10), and a steady radial solution would not form.

1.3.2 Planar geometry: general solution

To solve numerically Eqs. (1.6)-(1.8) for #; > 0, Tjp; > 0, and 8 = 1, we use the spatial
variable § = 7, (7 — 7)) and the ratios o; = v;/v, (j = r,7). The integration from points
M to Q yields the relation 7, = 2 &g(ay, o, TiM), where from the plasma balance condition
Uy = Uy (U, ﬂz-,TZ-M) is obtained.

The comparison of the solid and dash-dot lines in Figs. 1.2(a)-1.2(d) illustrates the effect
of warm ions on zero-ionization situations. First, since the plasma sound speed increases with

Tinr, one has that 7, and wall losses increase too. Second, for #; = 0, T;(r) decreases towards
the walls following the isentropic law (1.13) and yielding

Tiq/Tinr = exp(—3dqu/2) < 1.

Figure 1.3 and the dashed line of Figs. 1.2(a)-1.2(d) illustrate the influence of v; for different
values of v;/v,. Although v; contributes to v, [Eq. (A.7)|, for the present discussion it is
convenient to take them as independent parameters. Then, Figs. 1.2(a) and 1.2(b) indicate
that v,., and not v;, determine the net production frequency. The main effect of v; is to increase
the dispersion of ion velocities, that is the ion temperature. Figure 1.4 shows the competition
between the cooling effect of ion rarefaction, Eq. (1.13), the ion heating due to (and increasing
with) ionization.

The no axial-flow case: ,, = 7, = 7;, treated by Tonks and Langmuir and Refs. [16] and
[50], corresponds to a single solution point for each TiM; these are the asterisks marked in
Fig. 1.3. As Tonks and Langmuir explained (for Tiy = 0), the plasma balance condition in the
no axial-flow case determines totally the ionization frequency, v;, and, therefore, the electron
temperature. In cases where the axial flow is relevant (like the plasma discharge in a Hall
thruster), T, is determined by the axial energy balance mainly[10|, and the difference between
v;(T,) and the total production frequency, v, (7%, h) is provided by the axial variation of the
ion axial flux [Eq. (A.8)]. Finally, notice that in the Tonks-Langmuir problem, a steady-state
plasma discharge requires v, to be less than the absolute maximum of v;(7,), whereas in a
plasma flowing axially, the steady-state solution relies more on axial conditions.

1.3.3 Annular geometry

In this general case the convenient integration variable of Egs. (1.6)-(1.8) is n = 7. The
separate integrations of the presheath equations from point M towards points Q and Q', which

15



includes 7y, as an input parameter, yields n¢ and 7g as functions of ny, o, o4, and Tin. Then,
using the two equalities

Uy = NQ — N = 1Q/Tq (1.27)

the plasma balance condition in the form of Eq. (1.17) is obtained.

Figures 1.5(a)-1.5(c) depict spatial profiles of different magnitudes for zero-ionization cases
(v; = 0) and different annular ratios. Point M tends to drift towards the inner wall as S
decreases, yielding two asymmetric presheaths, with steeper gradients in the inner one, as
Tonks and Langmuir deduced. Plasma gradients tend to diverge as 8 — 0, but the solution
cannot be continued down to 8 = 0 (i.e., a cylindrical chamber), since then point M coincides
with the channel axis and the inner presheath disappears.

For v; = 0, the ion temperature follows the isentropic law (1.13). Consequences of this and
the Bohm conditions (1.10), are v,;9 = vy and n;g = n;g, independently of 5. Therefore,
in spite of the presheath asymmetry, one has equal wall currents and potential drops in both
presheaths,

v; =0: griw = Griw’, ¢Q’M = ‘/5QM-

Figures 1.6(a)-1.6(c) show, for different S, the evolution with v; of the main parameters of
the inner and outer presheaths. In Fig. 1.6(a) we see that 7, is affected weakly by the annular
ratio, §; notice that, similar to Fig. 1.3, the no axial-motion case corresponds to just one point:
Uy, = 1y, for each f-line. Figures 1.6(b) and 1.6(c) show that for »; > 0 and 8 < 1, wall currents
and potential drops are different in the two presheaths. Differences increase as § decreases;
departures from the planar solution become relevant for 5 < 0.7, roughly. Taking as a reference
the planar case, potential drops tend to be smaller in the inner presheath and larger in the outer
one [Fig. 1.6(b)]| whereas plasma currents [Fig. 1.6(c)] follow the opposite behavior. The sheath
solution (1.20) indicated that presheath asymmetries of an annular chamber do not produce
further asymmetries in the inner and outer sheaths. In conclusion, in an annular chamber with
non-zero ionization the particle and energy fluxes are larger at the inner wall than at the outer
one.

Ion temperatures at points Q and Q' for the cases of Fig. 1.6 are about 0.4 — 0.57, and their
dependence on 7, and S follow the trends of the respective potential drops. For 7, =0, 7, > 0,
and the rest of conditions the same as in Figs. 1.6, results are very similar to those of Figs. 1.6,
except for the ion temperatures, which are smaller due to the isentropic behavior, Eq. (1.13).

1.4 SUMMARY

A model of the radial structure of a plasma flowing along two dielectric walls must take into
account the contributions of the axial flow into the radial equations. In a macroscopic formu-
lation, this can be done by including three terms, representing a particle source, an effective
friction, and an internal energy source in the equations of continuity, momentum, and energy,
respectively. The production/loss of ions may come from either ionization or the axial flow;
the effective radial friction comes from both ionization and the axial variation of the radial
velocity; and the internal energy of the axial flow contributes to the energy balance. Compared
to the classical model of Tonks-Langmuir (and its macroscopic versions) the present model has
three new parameters (or degrees of freedom): a net ion production/loss frequency, v, (which
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is independent of the ionization frequency, v;), a frequency for ion radial friction, v, and the
ion temperature, T;,,, at the point separating inner and outer radial flows.

The plasma balance condition of Tonks-Langmuir stated that geometrical magnitudes de-
termined v; and, as a result, the electron temperature. In the present model, the plasma
balance condition yields v, as a function of the effective radial friction, the ionization rate,
the temperature 7}/, and geometrical magnitudes, whereas T, remains a free parameter (to be
determined from the axial conditions of the discharge). The investigation of the plasma bal-
ance condition reveals two important conclusions. First, v,,, beyond being proportional to the
channel width, depends significantly on v, in a way such that a strong radial friction can reduce
significantly the loss of plasma current into the lateral walls. And second, v; has practically no
direct influence on v,,; the indirect influence comes from the contribution of v; to v,.

The equation for the ion internal energy includes two source terms: one due to the velocity
dispersion of the ion fluid because of ionization, and the second one coming from the mean
temperature of the ion sources (ionization and axial flow). As a consequence, T;), is partially
independent of the temperature of the neutral gas, 7;,. Regarding the thermodynamic response
of the ions, it is shown that: (i) an isothermal behavior exists only for the zero-ionization and
zero-temperature limit; (ii) an isentropic response takes place for zero-ionization, with radial
rarefaction producing ion cooling; and (iii) for »; > 0 and T;3, > 0, heating due to ionization
competes with the rarefaction cooling in shaping the ion temperature profile.

The analysis of channels with different annular ratios, shows that asymmetries between the
profiles of the inner and outer presheaths are relevant for 5 < 0.7, roughly. Point M of maximum
potential moves towards the inner wall as § decreases, and plasma gradients are larger in the
inner presheath. In spite of that presheath asymmetry, for v; = 0 the potential drops and the
currents into the walls are the same in the inner and outer presheath. For v; > O(1), smaller
potential drops and larger wall currents are found in the inner presheath. Plasma currents
remain constant inside the sheaths and the sheath potential drops are practically independent
of the presheath solution.

To get an idea of the practical relevance of the different parameters controlling the presheath
solution typical values for a SPT-100 type of Hall thruster are 8 ~ 0.7, Tipy < 1, vy ~
2 — 4 x 10571, & ~ 1 in the ionization region and 7; < 1 outside it, and 7, ~ 1 in most of the
channel|7].

Finally, research is pursued in two directions. First, ceramic materials may present a sec-
ondary emission yield of order unity[55, 36|, which is not immediate to include in a presheath /sheath
model between two walls[9]. Second, to determine completely the conditions of the plasma dis-
charge requires the simultaneous solving of the coupled radial and axial models|7].
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inner sheath
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Figure 1.1: A generic radial section of a long annular channel between two dielectric walls.
9zi = NgiVg; and gp; = Ny, represent axial and radial particle fluxes; ¢(r) sketches the radial
profile of the electric potential, which is maximum at point M. The transitions to the sheaths are
at points Q and Q'. Since the presheath /sheath structure corresponds to the zero Debye-length
limit one has rw = rq and ry, = rg.
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Figure 1.2: Planar geometry: Evolution of plasma parameters with o, for (T}, v;) = (0, 0)[solid
line|, (1,0)[dash-dot line|, and (0, v, )[dashed line]. The dimensionless particle flux is g,; =

(ninty/ T./m;) ' gri.
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Figure 1.3: Planar geometry: Net production frequency versus ionization frequency for Tz;M =
0(solid lines) and 1(dashed lines) and v;/v, = 0.5,1 and 2 (from bottom to top for each T;u).
The asterisks correspond to the no-flowing case, v,, = v; = v,.
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Figure 1.4: Planar geometry: Radial profile of ion temperature for Tin = 0.3, 0, = i, and four
ionization frequencies: 7; = 0,1, 3 and 10.
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Figure 1.5: Annular geometry: Plasma profiles for different annular ratios (rg/ro =~ 0.013,

0.072, 0.21, 0.43), T;pr = 0.5, and 7, = 7; = 0. Points Q' are at the asterisks; points M are at
d¢/dr|y =0 (and v,; = 0) separating the inner and outer presheaths.
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o
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Figure 1.6: Annular geometry: Evolution of main plasma parameters with 7; for T;; = 0.5,
v, = v; and three annular ratios, § = 0.1,0.4 and 0.7. In (b) and (c) solid lines correspond to
the outer presheath, and dashed lines to the inner presheath.

22



Chapter 2

RADIAL MODEL WITH SECONDARY
EMISSION

2.1 INTRODUCTION

The transverse (or radial) interaction of a collisionless plasma with two dielectric walls confining
it was treated originally by Tonks and Langmuir|54|. They develop the sheath /presheath theory
for the zero-Debye length asymptotic limit and solved the fundamental issues of the problem.
In Tonks-Langmuir model and posterior papers complementing it, [33, 23, 16, 50| the ion
and electron losses to the walls are balanced by volume ionization. In Ch. 1 we generalized
that model to plasmas flowing longitudinally between planar or annular walls. The presheath
problem depends then on two new parameters related to the axial flow, and it is shown that
(i) in the absence (or excess) of ionization, the axial flow balances the radial losses of particles
to the walls, and (ii) axial gradients introduce a friction effect on the radial acceleration of the
ions, which leads to larger potential drops in the presheath and lower losses to the walls.

All the above models consider implicitly a passive (or non-emitting) wall. However, in many
cases electron emission by the wall is important. For certain ceramic materials, electron impact
produces secondary emission yields (the ratio between the secondary and primary fluxes at the
wall) above 100% [43, 36]. Secondary electrons interact with the electrostatic field and the
main plasma and modify sheath and presheath characteristics. The collisionless sheath with
secondary emission was studied by Hobbs and Wesson[34]|, who demonstrated that the sheath
becomes charge-saturated for a secondary emission yield close to 100%. However, they studied
the sheath exclusively, and they did not match it to any model for the bulk of the plasma.
To close the sheath equations, they impose the usual quasineutrality and sonic (i.e. Bohm)
conditions at the sheath/plasma boundary.

Schwager formulated a planar, kinetic model with secondary emission of the region between
one emitting wall and a source- or edge-plasma [51]. That region consisted of a (negative) wall
sheath, followed by a quasineutral region, and a (positive) sheath close to the edge-plasma.
Stephens and Ordofiez studied practically the same model [52], and Jolivet and Roussel apply
the last one to the case of a Hall thruster [36]. In these three models, secondary electrons are
assumed to accelerate freely across the whole plasma region between the emission wall and the
edge-plasma. The secondary population is thermalized at the edge-plasma and re-emitted back
as primary electrons to the central plasma region. This wall plus edge-plasma model does not
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reproduce satisfactorily the case of a plasma confined between two walls, with no intermediate
edge-plasma. In particular, this edge-plasma does not act as a 'symmetry mirror’ in a planar
geometry: (i) the solution for the secondary population is not symmetric, since that population
would be ’free’ in half-channel and ’thermalized’ in the other half; and (ii) the edge-plasma
tends to create a sheath-like region close to it which is not expected in the usual two-wall case.

As the works just commented suggest, the main difficulty lies in the treatment of the sec-
ondary electrons in the bulk of the plasma. In a recent conference we proposed that a consistent
presheath /sheath theory with secondary emission could be developed by treating differently the
electron populations in each region |9]. The present chapter develops in detail that model. The
two main pieces of it will be the Hobbs-Wesson model for the sheath (extended here to the case
of warm ions) and our presheath model for flowing plasmas and two annular walls.

An application of the resulting model, which is of particular interest to us, is the plasma
discharge in a Hall thruster chamber made of ceramic walls. The discharge is axisymmetric
and particle and energy losses to the walls are known to affect greatly the thruster performance
|46, 26, 38, 7|. Therefore, a good understanding of the radial plasma-wall interaction is crucial
to predict correctly the axial response of the discharge.

The rest of the chapter is organized as follows. In Sec. 1I we formulate the main hypotheses
of the model. In Sec. III we discuss the sheath solution. In Sec. IV we match the presheath
model to the sheath solution and we compute results for the complete solution. In Sec. V we
discuss the main results.

2.2 MODEL FORMULATION

Figure 2.1(a) sketches the radial model. The plasma flows between two annular walls placed,
in cylindrical coordinates (z,r,6), at r = ry» and r = ry = ry» + he, with h, the channel
width. Here, we are interested in the radial structure of the plasma discharge at a given axial
position z. For dielectric walls, the zero current condition implies, in general, the potential
profile ¢(r) to present a maximum at a central point of the channel [point M in Fig. 2.1(a)]
and to decrease monotonically towards the two walls [points W and W’|. Except for very large
voltages, secondary electron emission is due mainly to the impact of those electrons from the
main population with enough energy to reach the walls. Depending on their posterior evolution
inside the plasma, secondary electrons can be divided in two basic types: (i) a ’free’ group
constituted by those crossing the plasma from the emission wall and being collected back at
the opposite wall, without interacting with other particles, and (ii) a ’trapped’ group formed
by those suffering occasional collisions with other particles and multiple electrostatic reflexions
within the confining potential ¢(r), until they thermalize with the bulk electron population.

The ’free’ secondary population is simple to model; on the contrary, at each instant of time,
there are 'trapped’ secondary electrons with different temporal histories. The crucial issue of
any stationary model is to figure out which is the temporally-averaged collective distribution
of this trapped population. Our proposal is to take advantage of the presheath/sheath theory
and of a macroscopic formulation for a dual treatment of the 'trapped’ secondary electrons.
The presheath /sheath theory applies to the zero Debye-length limit,

/\d < hm /\cob (21)
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with \; the Debye length, and \.,; the relevant mean free-path for collisional processes. The
advantage of using this two-scale analysis is based on three features: (i) the sheaths are treated
as surface discontinuities in the quasineutral scale, but as as collisionless and ionization-free
regions in their inner scale; (ii) presheath and sheaths are solved separately in their own scales,
and then matched at the presheath/sheath transition; and (iii) the matching or transition
condition is unique and, for a plasma with zero radial low somewhere in the presheath, consists
of the sonic Bohm condition [40, 3.

The model we propose for the plasma is based in the following hypotheses:

(i) Within the thin, collisionless sheaths there are two independent electron populations:
population p of primary, confined electrons coming from the bulk of the plasma and population
s of secondary, wall-emitted electrons. Population s is accelerated freely by the sheath potential
from the wall to the presheath boundary.

(ii) We consider that ., < h, so that all secondary electrons remain trapped in the bulk
of the plasma. [This restricts the present model to the total-trapping case.|

(iii) Within the presheath, all (trapped) electrons, irrespective of their origin (ionization,
axial flow, or wall-emission), are grouped in a single population e.

(iv) There is a unique population (i) of ions in sheath and presheath. Quasineutrality in
the presheath means n; ~ n, at every point (and not just globally, as Ref. [52] states).

(v) To match consistently the solutions of presheath and sheaths three basic laws are im-
posed at each presheath/sheath transition: the conservation of the total electron density, the
conservation of the net electron flux, and the continuity of the ion flux.

2.3 SHEATH ANALYSIS

2.3.1 Sheath solution

In general, we will refer the discussion only to the sheath tied to the outer wall; the inner
sheath behaves in the same way. The outer sheath extends from the the wall (point W) to the
presheath transition (point Q). If the sheath is not charge-saturated the electric potential is
monotonic with ¢wg = ¢g — dw > 0. In the zero Debye-length limit of Eq. (2.1), the sheath
satisfies the conservation equations,

NV = const = g4, (2.2)

1 2
Emivfi + §TZ~ + e¢ = const, (2.3)
Ti/nf/?’ = const, (2.4)
np = nyay exp L. (2.5

P
NgUrs = CONSt = g, (2.6)
1

—mev?, — ed = const, (2.7)

2
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the flux conditions,

gri = Grp + Grs, (28)
g’rp = an V Tp/27rme, (29)
9rs = _(Sw(Tp)grpa (210)

and the (quasiplanar) Poisson equation,

€ d’¢

- a2 =n,+ns; —n;. (2.11)

The constants for the ion equations (2.2)-(2.4) are set at point Q and must match the values
obtained at the presheath side. Since the wall temperature, 75, is generally much smaller than
the plasma temperature 7}, the mean energy of the secondary electrons when they leave the
wall can be neglected (except in the very vicinity of point W) in Eq. (2.7). Equation (2.8) is the
zero-current condition, and Eq. (2.9) corresponds to assume a quasi-Maxwellian distribution
for population p.

In Eq. (2.10), the effective secondary emission yield of the wall, 6,,(7,), depends on both
T, and the wall material. For the present purposes, a good-enough expression of the emission
yield produced by a monoenergetic beam of energy E per electron is d,(E) ~ +/E/E?  with
E? the temperature for 100% yield (in the range E° ~ 10 — 100V, say)[26, 36]. Averaging over
the quasi-Maxwellian population p the effective yield satisfies

50(T,) = 1/ Ty/Eu, (2.12)

with E, ~ 0.57EY. This last relationship allows us to use E,/T, instead of d,, as input
parameter for the sheath problem.
Equation (2.11) states that

rT—Tw . €olp
= th Mg = A / 2.13
C )\d ) W1 d eQniQa ( )

is the natural spatial variable in the sheath. The integration of Poisson equation (2.11) together
with Eqgs.(2.4)-(2.7) yields the conservation equation

*nig [(d d
627:;:2 [(d_?y - (d_@;] = Ul(ed) — Uledq) (2.14)
with
Uled) = npTy + ngmevy, + ni(mivy; +T) (2.15)

the Sagdeev’s potential[45|. First and second derivatives of this function are
U'(e¢) = ny + ng — ny,

. (2.16)
U”(egb): @_ Ng _ znz .

5 )
T, mev2, mz-v”-—gTz-
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Equation (2.14) states the balance of the dynamic and electric pressures of the whole plasma
across the sheath. There are three boundary conditions related to Poisson equation. First,
plasma quasineutrality at point Q means

U, = 0. (2.17)

Second, for a solution to exist around point Q with |d¢/d(| increasing towards the wall,
Eq. (2.14) requires that Uj > 0. In terms of the ion velocity (and neglecting the case
MiVyg < 3T,o which does not lead to a valid solution at the wall) this condition is equiv-
alent to

NpQ + NsQ

T, ’

26¢WQ

5
mvio > she+ T (2.18)

NpQ — NsQ

which is the sonic/supersonic Bohm condition for this three-species sheath. Since the quasineu-
tral solution of the presheath accepts only a subsonic/sonic transition (see Sec. 2.4.2), the sonic
condition

Us =0, (2.19)

is the correct one for the sheath/presheath transition. Finally, the analysis of the transition
region around point () shows that the electric field, when measured in the sheath scale, tends
asymptotically to zero at the sheath side of point Q,[40, 48|

d(e¢/T,) - ﬁ

e~ a0 (2.20)

The preceding equations and conditions show that the dimensionless solution of the sheath
depends on just two parameters, &, (or E,/T}) and T = T;q/T,. Hobbs and Wesson treated
the case of cold ions, TZ—Q = 0. Figure 2(a) shows potential profiles for different emission yields
and two ion temperatures. For a given potential, a warm ion population has a larger density
and a lower velocity than a cold one, according to Eq. (2.3); this implies a smaller Debye length
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2.3.2 The charge-saturated regime(CSR)

Hobbs and Wesson showed (for Tjg = 0) that the sheath reaches the charge saturation limit(CSL)
at the wall, characterized by d(e¢/T,)/d( ‘ = 0, when the secondary yield and the potential
w

drop are

* Me €¢WQ "k
0w = 0y =1 —83,/—, = ~ 1.02. 2.22

For warm ions (i.e. Tjg > 0), the situation is similar. We find that the ion temperature has an
irrelevant influence on the value of , at the CSL: for xenon, one has 8% ~ 0.983 for T;y = 0
and 9; ~ 0.981 for T,-Q = 1. The effect of TiQ on other magnitudes is small but not negligible:
the sheath potential drop at the CSL, QAS’{,VQ(YA}Q), decreases about a 17% when TiQ goes from (
to 1.

For §,, > 67 the sheath is in the charge-saturated regime(CSR). A potential well is formed
near the wall to turn back the excess of secondary flux. Its magnitude, A¢,,, must be such that
the secondary flux satisfies the CSL condition g, = —9; ¢,, at the point of minimum potential.
A simple estimate yields

Then, in the asymptotic limit 7,,/7;, — 0, the potential well can be neglected and the dimen-
sionless solution for the whole charge-saturated regime (CSR) coincides with that of the CSL.
In particular, one has, for the CSR,

€¢WQ 7 x T
= const = dyyo(Tig)- (2.24)

p

A final observation is that Eq.(2.22) implies that g,;/|grs| ~ 8.3/me/m;, a result which
agrees in order of magnitude with the well-known Langmuir condition, g,;/|grs| = /me/m;
for a classical strong double layer (characterized by egwq/T, > 1) [40].

2.4 COMPLETE SOLUTION

2.4.1 Presheath solution

The solution of the sheath is universal for any value of the plasma density and the electron
temperature at the sheath entrance. In particular, the net plasma current to the wall, which is
constant across the sheath, is determined by the presheath.

For total trapping of secondary emission, the quasineutral plasma of the presheath consists
of (i) the population ¢ of ions, which accelerate from point M of maximum potential and zero ion
velocity towards the sheath transition points Q’ and Q, and (ii) a single population e of confined
electrons, which are in Maxwell-Boltzmann equilibrium at temperature 7,. Since population e
differs from population p of the sheath, their temperatures (which express the average random
energy of the two populations) are different, in general, and the relation between them is part
of the complete solution.

According to Ch. 1, for the general case of a plasma flowing axially between two annular
walls, the presheath problem depends on the channel geometry (annular ratio 8 = ry/rw, and
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channel width h.), the plasma conditions (ion density and temperature at point M, n;y, and
Tinr, and electron temperature T,), and effective frequencies for net plasma production (v,),
ionization (v;), and radial friction (v,). The presheath problem states that the transition to
the (outer) sheath is defined by the sonic Bohm condition [40, 3]

5

The dimensionless presheath solution depends on just four dimensionless parameters: 3, Ty =
Tire/Te, Ui = vi /vy, and 7, = v, /vy, with vy = h;'4/T,/m;. The relationship

D = 00 (B, Tint, Ui, i) (2.26)

is known as the plasma balance equation; for the no-flowing case of Tonks-Langmuir, one has
vy = v; = v, and the plasma balance equation becomes 7;(3,T;ps). Figure 2.5, commented
below, illustrates the presheath solution with a particular example.

2.4.2 Presheath/sheath matching

The correct matching of the presheath and sheath solutions comes out from three basic con-
servation equations, which, indeed, have been imposed already: first, there is the particle
conservation,

NpQ + Ns@ = Neqg = NiQ;

then, there is the continuity of the electron flux,

9rpQ + 9rsQ = GreQ = 9riQ,

Fig. 2.1(b); and, third, there is the continuity and compatibility of the ion flux, which requires
to satisfy the sonic Bohm conditions at the sheath and presheath sides, Egs. (2.19) and (2.25).

Of course, for no secondary emission, populations p and e coincide and Egs. (2.19) and
(2.25) are the same condition. The demonstration that this sonic condition yields the only valid
transition is well established [54, 48, 3|. For §, > 0, to consider that Egs. (2.19) and (2.25)
are the same condition is (partially, at least) a postulate based in fundamental properties of
the ion flow for the well-known zero-emission case. [A complete demonstration of the postulate
would require to specify the transformation of populations p and s into population e in a
transition layer centered at point Q.] Adding support to it, this postulate or condition closes
the presheath /sheath matching since it provides the relationship we needed between T, and T:
equating Eqs. (2.19) and (2.25) one has

. Tpnsq
T, 2
Ir _ eqﬁf{ QMQ 1, (2.27)
Te 1 + SQ
pQ

This way to relate the two temperatures is very adequate to our macroscopic model, more than
a method based on the electron distribution functions at the two sides of point Q. Figure 2.4
shows the evolution of the temperature ratio 7,,/7, with d,,, which is very similar to that of
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npg/Mig in Fig. 2.3(c). The fact that both are close to one even at the CSR, leads us to conclude
that the details of the modeling of the electron populations is not very critical for the overall
model.

In a recent two-dimensional model of the plasma discharge in a Hall thruster, Keidar et al.use
a radial presheath/sheath model with secondary emission [37]. Their formulation is similar to
ours for cold-ions (7; = 0) but the presheath /sheath matching is solved unsatisfactorily. First,
they do not explain how they relate the trapped populations in sheath and presheaths and just
take T}, = T¢, even at the CSR. Second and more important, they impose a subsonic ion flow at
the sheath entrance, violating the supersonic/sonic condition (2.18). The authors do not show
radial profiles to support their hypotheses.

2.4.3 Results

Figure 2.5 shows an example of a matched sheath/presheath solution for an annular channel.
Profiles are shown in the presheath scale, where the sheaths are two wall discontinuities; on the
contrary, the sheaths are semi-infinite in the inner scale ((; = —oo in Fig. 2.2). Wall conditions
in Fig. 2.5 are such that the two sheaths are in the CSR. The profiles of the inner and outer
presheaths are asymmetrical: larger potential drops and lower currents are found in the outer
presheath. The presheath asymmetry introduces a very small asymmetry between the two
sheaths (less than 1%). An interesting observation is that the potential drop in the presheath
is not negligible at all; indeed, in Fig. 2.5, the potential drop in the outer presheath is larger
than in the sheaths, ¢pgar > ¢wq. The profile of the ion temperature illustrates the competition
between the heating effect due to ionization and the cooling effect due to rarefaction, this last
one dominating totally in the sheaths and justifying the small effect of the ion temperature on
the sheath solution.

The sheath solution showed that the relative potential drop e¢w /7, decreases as &, in-
creases, and remains constant in the CSR. Figure 2.6(a) shows, for different wall materials, the
evolution of the sheath potential drop with the electron temperature in the bulk of the channel,
T,. There is a relative maximum of ¢y (7;), followed by a minimum just at the CSL, and then
a linear increase with T,: one has ey, o/T. ~ 0.88 (for xenon and T;o = 0). An important
point is that ¢y ¢ is independent of the wall material once in the CSR. The potential drops in
the presheaths, ¢gar and ¢g/ar, must be computed from the presheath solution of Ch. 1.

At a given radial cross-section, the energy fluxes of ion and electron into the (outer) wall
are

Qiw = grig (3mi(viy +v%) + 3Tiw) = grig(edwq + 2T, + DT + imiv2),

o7 (2.28)

QeW = grpQ2Tp = griQﬁa

- Vw
where v,; is the (average) velocity of the ion axial flow in that radial section. The first observed
feature is that electron losses depend strongly on the secondary-emission. Indeed, if there
is no axial flow, ion energy losses are about 3 times larger than electron energy losses for
0w = 0, whereas they become equal for d,, ~ 60 — 70%, and electron energy losses become two
orders of magnitude larger than ion ones in the CSR. Warm and axial flow effects increase ion
energy losses: in the acceleration region of a SPT-100 Hall thruster and for charge-saturated
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conditions, this increase can be up to one order of magnitude. Figures 6(b)-6(c) show the
evolution of electron and ion energy losses with F,, and T,. Notice the large gradients of QeW
with T, below the SCL. Again, the influence of the wall material disappears at the CSR, when
Qew scales as Te?’/Q.

2.5 DISCUSSION

The presheath /sheath model with total trapping of secondary emission presented here is based
in considering wall-emitted electrons as a free population within the thin, collisionless sheaths,
and as part of a unique population of confined electrons within the presheath. As a consequence
the populations of confined electrons in sheath and presheath are somewhat different. The
presheath and the sheaths are solved separately and then matched using continuity equations for
the plasmas density and fluxes. The sheath model is an extension of the Hobbs-Wesson model to
warm ions, and presents a charge-saturated regime. The presheath model is the one developed
recently by us for plasmas flowing axially, and of application to planar, cylindrical, and annular
geometries. The imposition of sonic Bohm conditions at the two sides of the transition point
closes the problem and relates the temperature of the confined electron populations in sheaths
and presheath. It is found that, even at charge saturation, the density of secondary electrons
entering into the presheath is small and the temperatures of the confined electron populations
in sheaths and presheath are similar.

The complete sheath/presheath solution depends on five dimensionless parameters: (3, 7;,
Uy, T, um, and E,,/T,. The first four determine the presheath solution whereas the sheath so-
lution depends mainly on the fifth one. At the charge-saturated regime the solution becomes
independent of the wall material. A relevant feature is that particle losses to the walls are
determined totally by the presheath, whereas the sheath solution gives only the energy losses
per particle. Electron energy losses change drastically with secondary emission. lon energy
losses depend weakly on §,,, have a contribution from the plasma axial flow, and dominate for
low secondary emission.

The sheath does not vanish at the charge-saturated regime. The sheath potential drop
presents a maximum for an intermediate value of J,, and a relative minimum at the charge-
saturated limit; then, it becomes proportional to the electron temperature. A non-zero ion
temperature does not modify the emission yield necessary for charge saturation but diminishes
the relative sheath potential at the charge-saturation regime. The potential drops in the inner
and outer presheaths are negligible never. Furthermore, they can be larger than the sheath
drops for large secondary emissions and large radial frictions. For annular channels, the inner
and outer presheaths are asymmetric, but the two sheaths are practically identical (for the
same wall material).

The model developed here is for total trapping of the secondary emission, which corresponds
to the collisional regime, \y < Ay < h.. For the collisionless regime, ., > h,, which is more
typical of Hall thruster discharges, secondary electrons could cross the whole presheath from
the emission wall and be collected at the opposite wall if they had enough radial energy to reach
it. For instance, for the potential profile of Fig. 2.5(a), Aot > he¢, and cold walls, electrons
emitted from the outer wall will be collected back at the inner wall, whereas electrons emitted
from the inner wall will be reflected back at the outer wall and will become either trapped in
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the plasma or collected back by the inner wall too. However, the presence of free populations of
secondary electrons modifies in turn the radial of the electric potential in sheaths and presheath.
Therefore,the present model is not applicable to partial trapping of secondary emission and a
more general must be developed.
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Figure 2.1: (a) A generic radial section of a long annular channel between two dielectric walls;
g and g, represent axial and radial particle fluxes, respectively; ¢(r) sketches the electric po-
tential, which is maximum at at intermediate point M; points Q and Q' represent the transitions
to the two sheaths, which actually are discontinuities in the quasineutral scale. (b) Treatment
of the electron populations in radial presheath and sheath: in each sheath, primary(p) and
secondary(s) electron populations are defined; in the presheath, a single population(e) is de-
fined; zero-current condition plus conservation conditions at the presheath/sheath transition
mean gr; = Gre = grp + grs there.
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Figure 2.2: (a) Potential profile for different values of the secondary emission yield and TiQ =0
(solid lines) and 1 (dashed lines). The cases 8,, = 6%, (Tiq) correspond to dé/d¢|w = 0, marking
the charge-saturation limit of the sheath. (b) Profiles of the different plasma species for TiQ =0
and d,, = 0,,; N; — N, — N5 is the net electric charge in the sheath.
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Figure 2.3: Evolution with d,, of the sheath potential drop, the electric field at the wall, and the
density of secondary electrons at point Q for T;o =0 (solid lines) and 1 (dashed lines). Circles
correspond to the charge saturation limit. At the SCL ¢y, goes from 1.02 at ’fiQ =0 to 0.846
at j}Q =1.
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Figure 2.4: Evolution with ¢,, of the temperature ratio for the confined electron populations p
of sheath and e of presheath for T;g =0 (solid lines) and 1 (dashed lines). At the SCL (7,/T.)*
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goes from 0.865 at T,Q =0t0 0.819 at T} = 1.
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Figure 2.5: Complete presheath/sheaths solutions for an annular channel with § = 0.285,
Tine/Te = 0.50, 7, = ; = 3.49, and charge-saturated conditions at the two sheaths, @'W' and
QW . The representation is in the quasineutral scale. In (¢) gr; = (ninrn/Te/m;) 1gr is the
dimensionless flux, which is constant across each sheath.
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Figure 2.6: (a) Sheath potential drop, (